Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown
نویسندگان
چکیده
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.
منابع مشابه
Plasma modeling for ultrashort pulse laser ablation of dielectrics
In ultrashort pulse ͑Ͻ10 ps͒ laser ablation of dielectrics, affected materials are first transformed into absorbing plasma with metallic properties and, then, the subsequent laser-plasma interaction causes material removals. For ultrashort-pulse laser ablation of dielectrics, this study proposes a model using the Fokker-Planck equation for electron density distribution, a plasma model for the opt...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملFemtosecond Laser Ablation: Fundamentals and Applications
Traditionally nanosecond laser pulses have been used for Laser-induced Breakdown Spectroscopy (LIBS) for quantitative and qualitative analysis of the samples. Laser produced plasmas using nanosecond laser pulses have been studied extensively since 1960s. With the advent of short and ultrashort laser pulses, there has been a growing interest in the applications of femtosecond and picosecond lase...
متن کاملCiliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics.
We report on a novel nonlinear optical phenomenon, coined as ciliary white light, during laser ablation of transparent dielectrics. It is observed in 14 different transparent materials including glasses, crystals, and polymers. This phenomenon is also universal with respect to laser polarization, pulse duration, and focusing geometry. We interpret its formation in terms of the nonlinear diffrac...
متن کاملModeling of Ultrashort Pulse Laser Ablation in Water
A numerical model combining the ultrafast radiative heat transfer and ablation rate equation for free electron density is proposed to investigate the transient process of plasma formation in distilled water. The focused beam propagation governed by the transient equation of radiative heat transfer is solved by the transient discrete ordinates method. The temporal evolution of free electron dens...
متن کامل